Differential Equations

Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be a particular solution to the differential equation $\frac{d y}{d x}=\frac{x}{y}$. with $\mathrm{f}(1)=2$.
a) Find the particular solution $y=f(x)$ with initial condition $f(1)=2$.
b) Use Euler's Method, starting at $x=1$ with 2 steps of equal size to approximate $f(2)$. Show the computations that lead to your answer.

Consider the differential equation $\frac{d y}{d x}=\frac{x}{y^{2}}$. Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be the particular solution to this differential equation with the initial condition $f(1)=0$.
c) Find the particular solution $\mathrm{y}=\mathrm{f}(\mathrm{x})$ to the differential equation $\frac{d y}{d x}=\frac{x}{y^{2}}$ with the initial condition $\mathrm{f}(1)=0$.

Let f be a function with $\mathrm{f}(4)=1$ such that all points (x, y) on the graph of f satisfy the differential equation $\frac{d y}{d x}=2 y(3-x)$.
a) Find $f(x)$
6. Consider the differential equation $\frac{d y}{d x}=x^{4}(y-2)$.
a) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $\mathrm{f}(0)=3$.
b) Use Euler's Method, starting at $\mathrm{x}=0$ with 2 steps of equal size to approximate $\mathrm{f}(1)$. Show the computations that lead to your answer.

